All posts by Chris Wallish

WSGC programs for incoming undergraduates at UW remove letters of reference requirement

The Washington NASA Space Grant Consortium is pleased to announce that our University of Washington scholarship programs for incoming undergraduates will no longer require letters of reference as part of the application process. This change is effective immediately for our scholarships for community college transfer applicants and for first-year student applicants.

Why have we made this change?  Letters of reference have long been standard practice in academia — often requested of applicants for an academic position, grant funding, or a graduate program.  They are, in theory, an opportunity for a review committee to get more insight about an applicant from a respected mentor or colleague.

In practice, unfortunately, letters of reference all too often simply reinforce an unequal status quo.  The students most likely to secure a letter of reference from a teacher or advisor are frequently students who are the most outspoken in class or in a club.  Students from minoritized communities, however, are typically the least likely to speak up school group settings, for various reasons.

Even when minoritized students are confident in their abilities, they are still less likely to receive recommendations than peers who are white boys/men.  As Sapna Cheryan, associate professor of psychology at the UW, explains, “Women [typically] tend to underestimate how well they will do, and men tend to overestimate”:

Here’s the rub: That wasn’t as true of African-American and Hispanic women. They shared similar self-efficacy values as white men. The difference was that African-American girls and women who expressed more confidence that they would exceed in math were recommended less often by their teachers for honors or advanced courses as compared to their white male peers. Self-confidence simply was not enough to encourage them in STEM when facing factors like discrimination and inadequate academic opportunities.

The Space Grant program, since its inception in 1989, has been dedicated to supporting students of all identities — inclusive of gender, ethnicity, race, religion, sexuality, disability — into STEM pursuits. The WSGC program at the UW regrets that our process has required letters of reference, creating a hurdle to many students whom we wish to welcome.

“Requesting recommendation letters for this scholarship program runs counter to supporting the very students we are trying to reach,” said Kristi Morgansen, director of the Washington Space Grant Consortium.  “Recommendation letters, in particular, and their use are a systematic issue, and one that we can absolutely work to mitigate.”

WSGC at the UW is reworking our applications for both of our scholarship programs for incoming students.  Our new process will roll out with our first-year student applications in autumn 2021.  We are also committed to leveraging our work to impact the larger systems.

If you are a community college student who is applying to the University of Washington to pursue a STEM degree, we hope you will accept our invitation to apply for the Space Grant scholarship program.  We are accepting applications through June 30, 2021.

Our sincere thanks to everyone who brought this issue to the forefront so that we can take this small, but exciting step forward.  As NASA Administrator Bill Nelson said when announcing the agency’s new Mission Equity, “When NASA opens doors to talent previously left untapped, the universe is the limit.”

Robert Winglee (1958–2020)

We are devastated to announce that Robert Winglee, director of Washington NASA Space Grant Consortium and of the Northwest Earth and Space Sciences Pipeline, has passed away.  He quite suddenly had a heart attack on December 24 and did not recover.

Robert was passionate about sharing his love of space and space science with others, and his impact went far beyond Seattle or the Pacific Northwest.  We invite you to join us in remembering him.  Please share your memories of Robert using #WingItLikeWinglee on Facebook, Instagram, or Twitter.

A celebration of his life will be held in the new year — we’ll share details when they’re available.

2020-2021 Application open for UW first-year students

The Washington Space Grant Consortium is now accepting applications for the UW Scholars for First-Year Students program.

In addition to financial support:

The Washington NASA Space Grant Consortium program at UW is designed to create a small college atmosphere within the larger university.

Read details on the program on its About page and information on applying on the FAQ.

Applications will close on Wednesday, Jan. 15, 2020, at 11:59 p.m. Pacific Time.

Huskies stretch a paw toward space

After five years, 25,000 hours, and work by dozens of students (from high school to graduate level), HuskySat-1 is in space. On Saturday, Nov. 2, a Northrop Grumman Cygnus resupply spacecraft launched from NASA’s Wallops Flight Facility in Virginia carrying HuskySat-1 among other science investigations and cargo. In January, the spacecraft will deploy its load of CubeSats, sending HuskySat-1 into orbit.

A CubeSat is a small satellite that measures exactly 10 centimeters (about 3 inches) along each side. HuskySat-1 is a “three-unit” system, meaning it’s the shape of a stack of three CubeSat-sized blocks. And students built all of it.

“Usually people buy most of the satellite and build one part of it. We built all the parts,” said Paige Northway, a doctoral student in Earth and Space Sciences. “It was a pretty serious undertaking.”

The camera setup on board was built with the help of students at the Raisbeck Aviation High School in the Highline School District.

The HuskySat project was funded both through Washington NASA Space Grant and via a NASA Undergraduate Student Instrument Project grant. WSGC Director Robert Winglee was at Wallops for the launch

WSGC Director Robert Winglee took some video at Wallops shortly before HuskySat-1 launched into space aboard a Northrop Grumman resupply mission.

The launch was broadcast live on NASA TV and is available to rewatch on NASA’s YouTube channel.

HuskySat in the news

Several students from the Husky Satellite Lab were featured in local news coverage.

“Now in space, a cutting-edge satellite the size of a shoebox, and UW students built it” — The Seattle Times, Nov. 11, 2019

Just be thankful there are students like Paige Northway and Nathan Wacker, two University of Washington students who think it’s neat to work on stuff like a satellite the size of a shoebox. For most of us, all that is beyond our comprehension. But that’s how things move forward in our high-tech age.

“Cygnus cargo ship heads to space station with satellite built by students in Seattle” — GeekWire, Nov. 2, 2019

Northrop Grumman launched a robotic Cygnus cargo capsule to the International Space Station today, marking one giant leap for a small satellite built by students at the University of Washington and Seattle’s Raisbeck Aviation High School.

“Washington students to make satellite history with HuskySat-1” — KOMONews, Oct. 31, 2019

Students are often told words of encouragement, such as “the sky is the limit.” These University of Washington students opted to shoot for the stars instead.

Washington’s first student-built satellite preparing for launch

By Hannah Hickey
UW News

Team members Paige Northway, Anika Hidayat, John Correy and Eli Reed (back row, left to right) watch in June as Henry Martin of Nanoracks does a “fit test” to ensure that the satellite fits inside the silver box. The digital clock on the wall counts down the days, minutes and seconds until launch. Dennis Wise/University of Washington

A University of Washington satellite smaller than a loaf of bread will, if all goes well, launch this weekend on its way to low-Earth orbit. It will be the first student-built satellite from Washington state to go into space.

HuskySat-1 is one of seven student-built satellites from around the country scheduled to launch at 9:30 a.m. Eastern time Saturday, Nov. 2, from NASA’s Wallops Flight Facility on the Virginia coast.

HuskySat-1 sits under protection in the UW satellite lab in June, as it prepared to leave on its journey to Virginia and then to low-Earth orbit. Dennis Wise/University of Washington

“It will be exciting once it’s in orbit,” said Paige Northway, a UW doctoral student in Earth and Space Sciences who has been involved since the project’s inception. “To me, the completion will be when we can get data from the satellite and send instructions back.”

HuskySat-1’s last moments on Earth will be broadcast live on NASA TV. The satellites are hitching a ride on the Cygnus cargo spacecraft, whose first stop will be the International Space Station to resupply astronauts and swap out materials. In early 2020 the spacecraft will leave the station and fly up to an altitude of about 310 miles (500 kilometers), where a NASA engineer will eject the student-build satellites.

An earlier model of the satellite, shown here in the lab, had solar panels on wings that unfold. The final model has solar panels attached on three sides to provide electrical power. Dennis Wise/University of Washington

The UW creation is a type of CubeSat, a small satellite that measures exactly 10 centimeters (about 3 inches) along each side. HuskySat-1 is a “three-unit” system, meaning it’s the shape of a stack of three CubeSat-sized blocks. These miniature satellites were first created as a way for engineering students to test software with smaller, cheaper devices they could build from start to finish in a few years. But the devices are growing in popularity, with Planet and other companies now using nanosatellites for commercial ventures.

NASA’s CubeSat Launch Initiative helps students and nonprofit groups launch these instrument systems into space. The Washington State University satellite, CougSat-1, is scheduled to launch in October 2020.

The UW satellite weighs just under 7 pounds (3.14 kilograms) and took five years to design and build. Undergraduate and graduate students from aeronautics and astronautics, mechanical engineering, computer engineering, Earth and space sciences, physics and other departments spent hundreds of hours building the system in the Husky Satellite Lab.

Its trip into low-Earth orbit is organized by Nanoracks, a Texas company that, like Spaceflight Industries of Seattle and other businesses, coordinates smaller groups to provide access to launch vehicles.

After extensive testing and final checkouts this summer, Northway hand-delivered the satellite in September to the Nanoracks facility in Houston, where it was placed into the box that will carry it to space.

“These students have gained firsthand experience on what is required to build and launch a satellite, and aerospace companies have already snapped up many of them,” said Robert Winglee, a professor of Earth and space sciences and the team’s faculty adviser as director of the UW Advanced Propulsion Lab. “Meanwhile, the UW is making its first steps to a continuing hardware presence in space. What more could you wish for?”

Three antennas installed on the roof of Johnson Hall will allow students to get information like position and altitude and send instructions to the satellite as it passes overhead. A camera built in collaboration with students at Raisbeck Aviation High School in Tukwila, Washington, will send back grainy, black-and-white photos of Earth. Students will also be able to control the satellite’s camera and thruster remotely.

“A lot of information is taught in classes, but only in a hands-on environment can you experience things like design, integration of subsystems, project management and documentation,” said team member Anika Hidayat, a senior in mechanical engineering.

HuskySat-1 will orbit at an angle of 51.6 degrees, traveling between 51.6 degrees north and south, at an altitude of 310 miles (500 kilometers) and at more than 4 miles (7 kilometers) per second. Once the students locate their satellite they will be able to predict its travel path.

White lines show the satellite’s projected travel path, orbiting at an angle of 51.6 degrees from the equator. The antennas at the UW will be able to communicate with HuskySat-1 when it flies inside the red circle. Paige Northway/University of Washington

Some of the student-built parts will still be in test mode. A custom-built thruster uses sparks to vaporize small amounts of solid sulfur as a propellant. The thruster will fire about 100 times as the satellite passes over Seattle, only enough thrust to provide a slight nudge. A high-bandwidth communications system built by former graduate student Paul Sturmer, now at Blue Origin, transmits at 24 Gigahertz, allowing the satellite to quickly send reams of data. That system will send down a test packet from space.

“Usually people buy most of the satellite and build one part of it. We built all the parts,” Northway said. “It was a pretty serious undertaking.”

Space odyssey: UW, WSU students building tiny, Kleenex-size satellites” Seattle Times – May 2017

Radio Amateur Satellite Corporation (AMSAT) page

HuskySat-1 in the international nanosats database

The UW group will control HuskySat-1 for three months. In the spring it will transfer ownership and responsibility to AMSAT, the Radio Amateur Satellite Corporation, which provided the main communication system. The satellite will begin to lose altitude in about three years and will burn up as it re-enters Earth’s atmosphere. (NASA requires that all such objects deorbit within 25 years.)

HuskySat-1 grew out of a special topics course in the UW Department of Earth & Space Sciences. In 2016 members formed a registered student organization, the Husky Satellite Lab at UW.

“Being involved with this has taught me a lot,” said current team captain John Correy, a UW graduate student in aeronautics and astronautics. “But beyond that, it’s just validation that I’m in the right industry.”

As the Husky Satellite Lab wraps up this half-decade-long effort it plans to next tackle a NanoLab project — a partly prebuilt system that can be adapted to conduct experiments in microgravity — for travel aboard a Blue Origin vehicle. Students plan to complete that project by spring of 2020.

HuskySat-1 was supported by a NASA Undergraduate Student Instrument Project award, which funded the satellite’s development and launch with a private space contractor. The team also was supported by NASA, the Washington NASA Space Grant Consortium, the UW and several companies that provided equipment for the satellite and antenna.

For more information, contact Northway at northway@uw.edu or Winglee at winglee@uw.edu. Learn more at www.uwsatellite.com.