Demonstrating and Evaluating Quantum

Key Distribution

Suhani Jain, Nick Yama, Prof. Kai-Mei Fu

-
O
-
" -
<
L
n
<<
==

SPACE GRANT

y

WNNILAOSNOD

INTRODUCTION

« Quantum Key Distribution (QKD) is a
fundamentally-secure method of sharing a key,
which is used for encryption

Alice Eve
& -
®||
Quantum Quantum
KE}' Quantum channel KE}'
Distribution Distribution
Device Classical channel Device
« Current public-key encryption isn't [1]

unconditionally secure - an efficient algorithm
for number factoring could break it
« BB84 - Bennett and Brassard:

encodes the key bits Qoit 1>

into a.smgle-photon R e

polarization state bt 0o
Alice . P °

 Alice and Bob

A State of Photon Polarization

randomly chose basis
to measure photon < > \/
in - get /\

Line:} basis Diagonal basis

corresponding bit

« Detect eavesdropper “Eve” by using a single [2]
photon source : No-Cloning Theorem and can't
measure photon without destroying it

GOALS:
« Perform QKD on quED

« Find parameters for single photon source
« Test effectiveness of information reconciliation

| [3] Set up of
Laser Use QKD on quED
quCR with polarizer
. and half-wave

plate

METHODS

« BB84 Protocol was run on the quEd from
guTools

« Randomly generates list of basis and bit
values for Alice and Bob to measure in

l Pulse Amplitude High (30.20 mA Ll

Pulse Duration :
Frequency ( 1000.00 Hz |

- ‘ﬁ;gl
s - B’O'h “‘rmfm‘w
y L # Basis |BitValue |Det? !
i .';% |
3

Errors: 0.0%

(0/0)
Key Bits: 0

invert Bob's polarizer

« The quED outputs a data file with the
information shared in the quantum
channel

« Python code can simulate the classical
channel - processing the key and error
reconciliation

SINGLE PHOTON SOURCE

« Detectors have 10% efficiency

« 1 photon/pulse __ pulse duration= 4 us

e |s theoretically secure but quED is an avg
of one photon/pulse, so Eve could be
undetected

Pulse Duration vs Photon Count per Pulse

(]
©
>
a
)
Q 0.5000 °
S
S [ ]
Q 0.4000 !
(@)
c °
S 0.3000
) °
&
0.2000
5 ° Freq = 1000 Hz
< 0.1000 o ® e Pulse Amplitude = 25 mA
oo’ Pulse Delay = 500 ms
0.0000
0 5 10 15 20 25 30 35

Pulse Duration (us)

ERROR:
°
Photon Count vs Error Rate
25.00
20.00 -
[ J
S ° o
= ° °
— 15.00 o
IS
< o °
S 1000 o
i,
5.00 Freq = 1000 Hz
Pulse Amplitude = 25 mA
Pulse Delay = 500 ms
0.00
0 2 4 6 8 10 12 14

Avg Photon Count per Pulse

* 15.96% error between Alice's and
Bob's key for one photon/pulse
« Higher error, harder to get same key

INFORMATION RECONCILIATION:

* Finds and corrects errors in Bob’s key

HAMMING (7, 4): ‘

« Parity check code

« Not suitable since it only
corrects at most 2 error
bits per 7 total bits [4]

CASCADE PROTOCOL:
Uses recursive methods to find and fix

errors by parity checks for random
subsections

Correct block at Alice

0 1 3 4 5 b 7
______ Block N
Top-level Current parity = 0 .
Blocks Correct parity (oskec) =1 1 01| 1 0 | 1 1 1 Noisy block at Bob
Error parity = Odd 1 2 3 4 5 f 7
— skt 2 L S NONOXNOXN
: Current parity = 0 Block N-R
Correct parity (asked) =0 1 0 1 0 1 1 1 Error parity (inferred) = Odd
: Error parity = Even 0 1 2 3 a 5 P 7
Sub VAV

' Block N-R-L
Blocks : Current parity =0
: Correct parity (asked) = 1

Error parity = Odd = 4 5

/ N

Block N-R-L-L
Currentparity =1 | 1 . Block N-R-L-R
Correct parity (asked) =1 Error parity (inferred) = Odd
------ Error parity = Even 4 5

[5] Key is split into sections and Bob checks parity of section
with Alice

Example:
Original Image that Alice
wants to encrypt:

Image with shared key
added:

Image decrypted by Bob with
unreconciled key vs reconciled key:

NEXT STEPS

Privacy amplification:

« Compensates for information leakage

« (Generates new key from old key so
Eve has negligible information about
key

ACKNOWLEDGEMENTS

This project funded in part by the WA NASA Space Grant
REFERENCES:

[1] https://cascade-python.readthedocs.io/en/latest/protocol.html

[2] https://www.researchgate.net/figure/Polarization-basis-of-the-protocol-

BB84 _fig2_324460751

[3] https://www.qutools.com/files/quED/quED-QKD-manual.pdf

[4] https://upload.wikimedia.org/wikipedia/commons/b/b0/Hamming%287%2C4%29.svg
[5] https://cascade-python.readthedocs.io/en/latest/protocol.html



