Demonstrating and Evaluating Quantum

Key Distribution

Suhani Jain, Nick Yama, Prof. Kai-Mei Fu

-
O
-
" -
<
L
n
<<
==

SPACE GRANT

y

WNNILAOSNOD

INTRODUCTION

« Quantum Key Distribution (QKD) is a
fundamentally-secure method of sharing a key,
which is used for encryption
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« Current public-key encryption isn't [1]

unconditionally secure - an efficient algorithm
for number factoring could break it
« BB84 - Bennett and Brassard:
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« Detect eavesdropper “Eve” by using a single [2]
photon source : No-Cloning Theorem and can't
measure photon without destroying it

GOALS:
« Perform QKD on quED

« Find parameters for single photon source
« Test effectiveness of information reconciliation

| [3] Set up of
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METHODS

« BB84 Protocol was run on the quEd from
guTools

« Randomly generates list of basis and bit
values for Alice and Bob to measure in
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« The quED outputs a data file with the
information shared in the quantum
channel

« Python code can simulate the classical
channel - processing the key and error
reconciliation

SINGLE PHOTON SOURCE

« Detectors have 10% efficiency

« 1 photon/pulse __ pulse duration= 4 us

e |s theoretically secure but quED is an avg
of one photon/pulse, so Eve could be
undetected

Pulse Duration vs Photon Count per Pulse
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* 15.96% error between Alice's and
Bob's key for one photon/pulse
« Higher error, harder to get same key

INFORMATION RECONCILIATION:

* Finds and corrects errors in Bob’s key

HAMMING (7, 4): ‘

« Parity check code

« Not suitable since it only
corrects at most 2 error
bits per 7 total bits [4]

CASCADE PROTOCOL:
Uses recursive methods to find and fix

errors by parity checks for random
subsections
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[5] Key is split into sections and Bob checks parity of section
with Alice

Example:
Original Image that Alice
wants to encrypt:

Image with shared key
added:

Image decrypted by Bob with
unreconciled key vs reconciled key:

NEXT STEPS

Privacy amplification:

« Compensates for information leakage

« (Generates new key from old key so
Eve has negligible information about
key
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