Quantifying Single Photon Purity in a Commercial Quantum Teaching Apparatus

Helen Lai

INTRODUCTION

As a part of the shared Quantum Technology Teaching and Testbed (QT3) Laboratory, the quED, a commercial quantum physics science kit developed by quTools, is being used to perform various quantum measurements. A single photon source is required for many of these measurements. So, we will use the g² measurement to verify whether the kit's commercial source is a single photon source, and if so, what its single-photon purity is.

BACKGROUND

Quantum Nature of Light

- Light exists in quantized packets of energy
- Smallest, indivisible packet is called a "photon"

Hanbury Brown and Twiss Effect

Single photon behaves as particle when incident on beam splitter, so can only take one path at a time

Standard g² Measurement

- 1) Light source incident on beam splitter
- 2) Detector at either output path
- 3) Detectors connected to counter
- 4) Use counts to calculate $g^2(0)$ value

$g^{2}(0)$ Value

• Gives correlation between detections on both channels separated by time delay of 0

Coherent source: $g^2(0) = 1$ Single-photon source: $g^2(0) = 0$ (we accept $g^2(0) < 0.5$) Represents single-photon purity, so a value closer to 0 indicates a better source

Setup

 g^{\prime}

 g_{F}^{2}

METHODS & RESULTS

g²(0) Measurement on quED

quED can perform two types of g²(0) measurements Coincidence window: 30 ns

Non-heralded g²(0)

$$R^{2}(0) = \frac{R_{12}}{R_1 R_2 t_c} = \frac{177.3}{78259.1 * 76121.0 * (30 ns)}$$

= 0.99

(R refers to count rates)

Suggests it is not a single photon source

Heralded g²(0)

$$P_{H}(0) = \frac{N_{t12} * N_t}{N_{t1} * N_{t2}} = \frac{15 * 1.62537 * 10^6}{10470 * 9742} = 0.24$$

(N refers to the counts)

Suggests that with heralding, it is a single photon source

qutools	quC	NT Rates	
Single 1	782591	/10 s	
Single 2	761210	/10 s	1000 ms
Coincidence 12	1773	/10 s	100 ms
0 1 2	01 02	12 012	sync per Puls

QUCNT Rates				
Single 0	1.62537e+06	/10 s		
Coincidence 01	10470	/10 s		
Coincidence 02	9742	/10 s	ms 100	
Coincidence 012	15	/10 s		
0 1 2	01 02 12	012	sync per Puls	

References

[5] "Nitrogen-Vacancy Center," Wikipedia, 29-Jul-2022. [Online]. Available: https://en.wikipedia.org/wiki/Nitrogen-vacancy_center. [Accessed: 10-Aug-2022]. [6] Single-Crystal Diamonds with Nitrogen-vacancy (NV) centers. [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=15078. [Accessed: 10-Aug-2022].

ANALYSIS

Why is Heralding Needed?

- Eliminates the vacuum (10>) state
- Non-heralded: Probability of detecting no photon is much higher than detecting one or more photons, which follows a Poisson distribution and therefore a coherent source.
- Heralded: The vacuum state is never considered because a detection on the trigger arm is required to register as a coincidence, so the I1> state is the most probable. This is what you would expect for a single photon source.

Limits background counts 2.

Addition of trigger arm in heralded g² makes it harder for a background count to be registered as a coincidence because it must be detected within the same coincidence window as a heralded photon pair.

Purity of Heralded Single Photon Source

- Many quantum applications require a very high single-photon purity (often a $g^2(0)$ below 0.1)
- Our $g_{H^2}(0)$ of 0.24 is not very good, which may be a result of the 30 ns time window being a limitation

NEXT STEPS

- A confocal microscope is being developed for the QT3 lab to study single quantum emitters in various solid-state systems
- g² measurement can be used to find and verify single nitrogen vacancy centers (NVs)

Acknowledgements

- Thank you to the WA NASA Space Grant for funding my research this summer
- Thank you to my PI, Kai-Mei Fu, and my mentor, Christian Pederson, for providing resources and support
- Thank you to my partner, Enrique Garcia, for working with me on this project

^{[1] &}quot;Qued-HBT Manual V1 - Qutools." [Online]. Available: https://www.qutools.com/files/quED/quED-HBT/quED-HBT-manual.pdf. [Accessed: 11-Aug-2022]. [2] P. Q. GmbH, "Antibunching," PicoQuant. [Online]. Available: https://www.picoquant.com/applications/category/metrology/antibunching. [Accessed: 10-Aug-2022].

^[3] Sponsored by Delmic B.V.Nov 16 2018, "Applications of cathodoluminescence G(2) imaging," AZoNano.com, 20-Oct-2020. [Online]. Available: https://www.azonano.com/article.aspx?ArticleID=5073. [Accessed: 10-Aug-2022].

^[4] Qutools. [Online]. Available: https://qutools.com/qued/. [Accessed: 10-Aug-2022].